MATHEMATICS STANDARD LEVEL PAPER 1 Monday 7 May 2007 (afternoon) 1 hour 30 minutes | a 1.1 | | 1 | |-----------|---------|--------| | Candidate | session | number | | 0 | 0 | | | | | | | | | |---|---|--|--|--|--|--|--|--|--| |---|---|--|--|--|--|--|--|--|--| ## INSTRUCTIONS TO CANDIDATES - Write your session number in the boxes above. - Do not open this examination paper until instructed to do so. - Answer all the questions in the spaces provided. - Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary. | 1. | | population of a city at the end of 1972 was 250000 . The population increases by 6 per year. | |----|-----|--| | | (a) | Write down the population at the end of 1973. | | | (b) | Find the population at the end of 2002. | One of the terms of the expansion of $(x+2y)^{10}$ is ax^8y^2 . Find the value | e of a. | |--|---------| 2. - 3. Let $f(x) = \sqrt{x+4}$, $x \ge -4$ and $g(x) = x^2$, $x \in \mathbb{R}$. - (a) Find $(g \circ f)(3)$. - (b) Find $f^{-1}(x)$. - (c) Write down the domain of f^{-1} . |
 | |
• |
• | • |
 | • | |
• | • | • |
• | ٠ | • | • | • |
 | • | ٠ | ٠ | • | • | • |
• | • | ٠ | • | • |
• | • | • | • |
• | ٠ | • | • |
• | ٠ | • | - |
 | • | • | • | • |
• | |------|---|-------|-------|---|-------|---|---|-------|---|---|-------|---|---|---|---|------|---|---|---|---|---|---|-------|---|---|---|---|-------|---|---|---|-------|---|---|---|-------|---|---|---|------|---|---|---|---|-------| |
 | | | | • |
 | | |
• | | | | | | | |
 | | | | | | |
 | | | • | • |
 | | | • | | | | | | | • | • |
 | | • | | | | |
 | | | | |
 | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | |
 | | | | | | |
 | | | | | | | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | | |
 | | | | |
 | |
 | | | | |
 | | | | | | | | | | |
 | | | | | | |
 | | | | |
 | | | | | | | | | | | |
 | | | | |
 | • |
• |
• | • |
• | • | • |
• | • | • |
• | • | • | • | • |
 | • | • | • | • | • | • |
• | • | • | • | • |
• | • | • | • |
• | • | • | • |
• | • | • | • |
 | • | • | • | • |
• | |
 | |
• |
• | • |
 | • | |
• | • | • |
• | • | • | • | • |
 | • | • | • | • | • | |
• | • | • | • | • |
• | • | • | • |
• | • | • | • |
• | • | • | • |
 | • | • | • | • |
• | |
 |
 | ٠ | ٠ | • | • |
٠ | |
 | | | | |
 | | | | | | | | | | |
 |
 | | | | | | **4.** The eye colour of 97 students is recorded in the chart below. | | Brown | Blue | Green | |--------|-------|------|-------| | Male | 21 | 16 | 9 | | Female | 19 | 19 | 13 | One student is selected at random. - (a) Write down the probability that the student is a male. - (b) Write down the probability that the student has green eyes, given that the student is a female. | (c) | Find the probability | that the student has | green eyes or is male. | | |-----|----------------------|----------------------|------------------------|--| 5. | Let | f'(x) | $=12x^{2}$ | -2. | |----|-----|--------|------------|-----| | | | .) (/ | | | Given that f(-1)=1, find f(x). - 6. Consider the vectors $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} + \mathbf{j} p\mathbf{k}$. - (a) Given that \mathbf{u} is perpendicular to \mathbf{v} find the value of p. | | | | | | |
 |
 | | | | | | | | |--|--|--|--|--|--|------|------|--|--|--|--|--|--|--| | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | | | 7. Let $$\mathbf{A} = \begin{pmatrix} 1 & x & -1 \\ 3 & 1 & 4 \end{pmatrix}$$ and $\mathbf{B} = \begin{pmatrix} 3 \\ x \\ 2 \end{pmatrix}$. (a) Find *AB*. | (b) | The matrix $C =$ | $\begin{pmatrix} 20 \\ 28 \end{pmatrix}$ | and $2AB = C$. | Find the value of x | |-----|------------------|--|-----------------|---------------------| |-----|------------------|--|-----------------|---------------------| |
 |
 |
 | |------|------|------| |
 |
 |
 | | | | | | | | | |
 |
 |
 | |
 |
 |
 | - **8.** The weights of a group of children are normally distributed with a mean of 22.5 kg and a standard deviation of 2.2 kg. - (a) Write down the probability that a child selected at random has a weight more than 25.8 kg. | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | |--|--|--|--|--|--|--|--|--|--|--|--|--|--|------|------|------|--|--|--|--|--|------|--|---|------|--|--|------|--|--|------|--| | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | • |
 | | | | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | | | | • |
 | | | | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | • |
 | | | | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | | | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | | | | | | | | | |
 |
 |
 | | | | | |
 | | |
 | | |
 | | |
 | (c) The diagram below shows a normal curve. On the diagram, shade the region that represents the following information: 87 % of the children weigh less than 25 kg | 9. | | velocity, v , in ms ⁻¹ of a particle moving in a straight line is given by $v = e^{3t-2}$, where he time in seconds. | |----|-----|--| | | (a) | Find the acceleration of the particle at $t = 1$. | | | (b) | At what value of t does the particle have a velocity of 22.3 ms ⁻¹ ? | | | (c) | Find the distance travelled in the first second. | ## A set of data is **10.** 18, 18, 19, 19, 20, 22, 22, 23, 27, 28, 28, 31, 34, 34, 36. The box and whisker plot for this data is shown below. Write down the values of A, B, C, D and E. (a) A = $B = \qquad C = \qquad D =$ $E = \dots$ Find the interquartile range. 11. The following diagram shows a sector of a circle of radius r cm, and angle θ at the centre. The perimeter of the sector is 20 cm. - (a) Show that $\theta = \frac{20 2r}{r}$. - (b) The area of the sector is 25 cm^2 . Find the value of r. |
 |
 |
 |
 |
 |
 | | |
 |
 | |
 |
 | | |
 |
 |
 | | | |------|------|------|------|------|------|--|--|------|------|--|------|------|--|--|------|------|------|--|--|
 |
 |
 | |
 |
 | | |
 |
 | |
 |
 | | |
 | |
 | | | - 12. Consider two different quadratic functions of the form $f(x) = 4x^2 qx + 25$. The graph of each function has its vertex on the x-axis. - (a) Find both values of q. - (b) For the greater value of q, solve f(x) = 0. - (c) Find the coordinates of the point of intersection of the two graphs. |
 | | | |
 | | | |
 | | |
 | |
 |------|---|---|-------|------|---|-------|---|------|---|---|-------|--|------|---|---|--|---|--|---|---|---|-------|--|---|---|-------|---|-------|--|---|---|--|--|---|---|--| |
 | | | |
 | | | |
 | | |
 | |
 |
 | | | |
 | | | |
 | | |
 | |
 |
 | • | • |
• | | • |
• | • |
 | • | • |
 | | | ٠ | • | | ٠ | | | • | • |
• | | • | • |
• | • |
• | | • | • | | | • | • | | |
 | | | | | | | |
 |
 | | | |
 | | | |
 | | |
 |
 | | | |
 | | | |
 | | |
 | | | | | | | | | | • |
• | | | • | | • | | | | | | | | • | | |
 | | | |
 | | | |
 | | | | |
 |
 | | ٠ |
٠ |
 | | | |
 | | |
 | | | | | | ٠ | | | | |
• | | | • | | | | | | | | | | • | | |
 | | | |
 | | | |
 | | |
• | | | | | | | | • | | | | | | | | |
• | | | | | | | | | |
 | | | |
 | | | |
 | | |
 | 13. Let $f(x) = \ln(x+2)$, $x > -2$ and $g(x) = e^{(x-4)}$, | |---| |---| - (a) Write down the x-intercept of the graph of f. - (b) (i) Write down f(-1.999). - (ii) Find the range of f. | (c) | Find the co | oordinates of the po | oint of intersection of the | ne graphs of f and g . | |-----|-------------|----------------------|-----------------------------|----------------------------| 14. The graph of a function f is shown in the diagram below. The point A(-1, 1) is on the graph, and y = -1 is a horizontal asymptote. - (a) Let g(x) = f(x-1) + 2. On the diagram, sketch the graph of g. - (b) Write down the equation of the horizontal asymptote of g. | (c) | Let A' be the point on the graph of g corresponding to point A . | Write down the | |-----|--|----------------| | | coordinates of A'. | | | | | | | | | | | | |
 |--|--|--|--|--|--|--|--|--|--|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|--|---|--|--|--|--|---|--|--|--|
 | | | | | | | | | | | | | | | | | • | | | | • | | | | | • | - 15. Let $f(x) = 3\cos 2x + \sin^2 x$. - (a) Show that $f'(x) = -5\sin 2x$. - (b) In the interval $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, one normal to the graph of f has equation x = k. Find the value of k. |
 | • |
٠. | • |
• |
• |
٠ |
• |
• | • |
• |
 | • | • |
• |
• | • |
٠ |
• |
• |
• |
٠ |
• | • |
• |
• |
• |
• | |------|---|--------|---|-------|-------|-------|-------|-------|---|-------|------|---|---|-------|-------|---|-------|-------|-------|-------|-------|-------|---|-------|-------|-------|-------|