

MATHEMATICS STANDARD LEVEL PAPER 1

Monday 7 May 2007 (afternoon)

1 hour 30 minutes

a 1.1		1
Candidate	session	number

0	0								
---	---	--	--	--	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1.		population of a city at the end of 1972 was 250000 . The population increases by 6 per year.
	(a)	Write down the population at the end of 1973.
	(b)	Find the population at the end of 2002.

One of the terms of the expansion of $(x+2y)^{10}$ is ax^8y^2 . Find the value	e of a.

2.

- 3. Let $f(x) = \sqrt{x+4}$, $x \ge -4$ and $g(x) = x^2$, $x \in \mathbb{R}$.
 - (a) Find $(g \circ f)(3)$.
 - (b) Find $f^{-1}(x)$.
 - (c) Write down the domain of f^{-1} .

 		 •	 •	•	 	•		 •	•	•	 •	٠	•	•	•	 	•	٠	٠	•	•	•	 •	•	٠	•	•	 •	•	•	•	 •	٠	•	•	 •	٠	•	-	 	•	•	•	•	 •
 				•	 			 •								 							 			•	•	 			•							•	•	 		•			
	•	 •	 •	•	 •	•	•	 •	•	•	 •	•	•	•	•	 	•	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	 •	•	•	•	 •	•	•	•	 	•	•	•	•	 •
 		 •	 •	•	 	•		 •	•	•	 •	•	•	•	•	 	•	•	•	•	•		 •	•	•	•	•	 •	•	•	•	 •	•	•	•	 •	•	•	•	 	•	•	•	•	 •
 																																								 	٠	٠	•	•	 ٠

4. The eye colour of 97 students is recorded in the chart below.

	Brown	Blue	Green
Male	21	16	9
Female	19	19	13

One student is selected at random.

- (a) Write down the probability that the student is a male.
- (b) Write down the probability that the student has green eyes, given that the student is a female.

(c)	Find the probability	that the student has	green eyes or is male.	

5.	Let	f'(x)	$=12x^{2}$	-2.
		.) (/		

Given that f(-1)=1, find f(x).

- 6. Consider the vectors $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} + \mathbf{j} p\mathbf{k}$.
 - (a) Given that \mathbf{u} is perpendicular to \mathbf{v} find the value of p.

7. Let
$$\mathbf{A} = \begin{pmatrix} 1 & x & -1 \\ 3 & 1 & 4 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 \\ x \\ 2 \end{pmatrix}$.

(a) Find *AB*.

(b)	The matrix $C =$	$\begin{pmatrix} 20 \\ 28 \end{pmatrix}$	and $2AB = C$.	Find the value of x
-----	------------------	--	-----------------	---------------------

- **8.** The weights of a group of children are normally distributed with a mean of 22.5 kg and a standard deviation of 2.2 kg.
 - (a) Write down the probability that a child selected at random has a weight more than 25.8 kg.

														 	 	 						 		•	 						 	
														 	 	 								•	 						 	
														 	 	 						 		•	 						 	

(c) The diagram below shows a normal curve.

On the diagram, shade the region that represents the following information:

87 % of the children weigh less than 25 kg

9.		velocity, v , in ms ⁻¹ of a particle moving in a straight line is given by $v = e^{3t-2}$, where he time in seconds.
	(a)	Find the acceleration of the particle at $t = 1$.
	(b)	At what value of t does the particle have a velocity of 22.3 ms ⁻¹ ?
	(c)	Find the distance travelled in the first second.

A set of data is **10.**

18, 18, 19, 19, 20, 22, 22, 23, 27, 28, 28, 31, 34, 34, 36.

The box and whisker plot for this data is shown below.

Write down the values of A, B, C, D and E. (a)

A =

 $B = \qquad C = \qquad D =$

 $E = \dots$

Find the interquartile range.

11. The following diagram shows a sector of a circle of radius r cm, and angle θ at the centre. The perimeter of the sector is 20 cm.

- (a) Show that $\theta = \frac{20 2r}{r}$.
- (b) The area of the sector is 25 cm^2 . Find the value of r.

- 12. Consider two different quadratic functions of the form $f(x) = 4x^2 qx + 25$. The graph of each function has its vertex on the x-axis.
 - (a) Find both values of q.
 - (b) For the greater value of q, solve f(x) = 0.
 - (c) Find the coordinates of the point of intersection of the two graphs.

 	•	•	 •		•	 •	•	 	•	•	 			٠	•		٠			•	•	 •		•	•	 •	•	 •		•	•			•	•	
 				 				 			 										•	 •			•		•								•	
 		٠	 ٠	 				 			 						٠					 •			•										•	
 				 				 			 •								•									 •								

13. Let $f(x) = \ln(x+2)$, $x > -2$ and $g(x) = e^{(x-4)}$,

- (a) Write down the x-intercept of the graph of f.
- (b) (i) Write down f(-1.999).
 - (ii) Find the range of f.

(c)	Find the co	oordinates of the po	oint of intersection of the	ne graphs of f and g .

14. The graph of a function f is shown in the diagram below. The point A(-1, 1) is on the graph, and y = -1 is a horizontal asymptote.

- (a) Let g(x) = f(x-1) + 2. On the diagram, sketch the graph of g.
- (b) Write down the equation of the horizontal asymptote of g.

(c)	Let A' be the point on the graph of g corresponding to point A .	Write down the
	coordinates of A'.	

										 																	•				•					•			

- 15. Let $f(x) = 3\cos 2x + \sin^2 x$.
 - (a) Show that $f'(x) = -5\sin 2x$.
 - (b) In the interval $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, one normal to the graph of f has equation x = k. Find the value of k.

 	•	 ٠.	•	 •	 •	 ٠	 •	 •	•	 •	 	•	•	 •	 •	•	 ٠	 •	 •	 •	 ٠	 •	•	 •	 •	 •	 •